On Khabibullin's conjecture about pair of integral inequalities

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New integral inequalities for $s$-preinvex functions

In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.

متن کامل

On Russo's Conjecture about Primes

Let n, k be positive integres with k>2, and let b be a posItIve number with b> I. In this paper we prove that if n>C(k) , where C(k) IS an effectively computable constant depending on k, then we have C (n,k) <21lt .

متن کامل

On an Open Problem of Integral Inequalities

In this paper, some generalized integral inequalities which originate from an open problem posed in [F. Qi, Several integral inequalities, J. Inequal. Pure Appl. Math., 1(2) (2000), Art. 19] are established.

متن کامل

New Integral Inequalities Through the phi-Preinvexity

Abstract. In this note, we give some estimates of the generalized quadrature formula of Gauss-Jacobi type for phi-preinvex functions.

متن کامل

Diamond-alpha Integral Inequalities on Time Scales

The theory of the calculus of variations was recently extended to the more general time scales setting, both for delta and nabla integrals. The primary purpose of this paper is to further extend the theory on time scales, by establishing some basic diamond-alpha dynamic integral inequalities. We prove generalized versions of Hölder, Cauchy-Schwarz, Minkowski, and Jensen’s inequalities. For the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ufa Mathematical Journal

سال: 2018

ISSN: 2074-1863,2074-1871

DOI: 10.13108/2018-10-3-117